
1

Game Programming

 Szymon Szydlik | 6C5

Trape 2023

 Tutrice: Edyta Zenatello

 Haus: Schoenfels

2

Table of Contents

1. Introduction .. 3

1.1. My Game .. 3

1.2. Lua .. 3

1.3. Roblox Studio ... 4

1.4. Visual Studio Code ... 4

1.5. Blender ... 5

2. The making ... 6

2.1. The first steps ... 6

2.2. User Interface (UI) .. 8

2.3. Modeling .. 11

2.4. Coding .. 11

2.5. Bug fixes ... 20

3. The end ... 22

3.1. Conclusion .. 22

3

1. Introduction

1.1. My game

The first idea I had was making a game where the player could travel

between a variety of planets. But I thought that concept was a little bit

boring, that’s why I decided to make a game where you can make your own

planet. The goal is to make the best-looking planet you can!

1.2. Lua

A lot of different applications employ the lightweight, high-performance

programming language Lua. A group of academics from the Pontifical

Catholic University of Rio de Janeiro in Brazil developed and applied it for

the first time in 1993.

One of Lua's important characteristics is its compact size and minimalist

design, which makes it simple to incorporate in other programs. Its

straightforward syntax makes it simple to understand and use for both

seasoned programmers and newbies. Additionally, Lua is quite portable,

supporting a variety of operating systems such as Windows, Linux, and

macOS.

With a strong and adaptable C API that enables integration with other

systems and languages, Lua is also very expandable. Due to this, it is a well-

liked option for game creation and is used in several well-known game

engines, including Unity, Unreal Engine and ROBLOX Studio. Numerous

additional applications, including scientific computing, network

programming, and web development also employ Lua.

The performance of Lua is outstanding. A virtual machine interprets the

bytecode created by the compilation of Lua code. This enables effective

execution, with a speed that is frequently on par with that of compiled

languages. Lua is a strong choice for embedded systems and other

4

resource-constrained situations due to its minimal memory footprint and

memory-efficient design.

In general, Lua is a robust and adaptable programming language that is

suitable for a variety of applications. It is frequently used in game

development, scientific computing, network programming, and web

development due to its compact size, extensibility, and outstanding speed.

1.3. ROBLOX Studio

A software development tool for the online gaming platform ROBLOX is

called ROBLOX Studio. It was created by the ROBLOX business. With the

help of a drag-and-drop user interface and a basic programming language,

users can make their own video games and virtual worlds. Users of ROBLOX

Studio can design environments, make their own 3D models, and utilize Lua

to program game mechanisms.

The accessibility of ROBLOX Studio to users of all ability levels is one of its

key advantages. With the help of the drag-and-drop interface and

straightforward scripting language, even non-programmers may make their

own video games and virtual worlds. The software is also available to a

wide variety of people for free download and use.

Additionally, ROBLOX Studio has a large and active community of

developers and creators who share tutorials, tips, and resources to help

others learn and create with the software. This community helps new users

to get started, and experienced users to improve their skills and take their

creations to the next level. This is a good game engine and I personally like

using it.

1.4. Visual Studio Code

Microsoft created Visual Studio Coding (VS Code), a well-liked and potent

code editor. It is available for Windows, Linux, and macOS and is open

5

source. With a large selection of extensions and themes available to

improve its functionality and appearance, VS Code is extremely

customizable.

Debugging tools are also provided by VS Code, making it simple to locate

and correct issues in your code. Several languages, including JavaScript,

TypeScript, JavaScript, Python and Lua, which is the language I used for my

game, are supported by the editor's built-in debugger. Additionally, it

offers a live sharing feature that facilitates collaboration by enabling

numerous developers to collaborate in real-time on the same codebase.

In addition, VS Code has a wide range of extensions that can be added to

enhance its functionality. These extensions can provide additional

languages, themes, debugging tools, and more. Many of these extensions

are open source and community-developed, which means that they are

constantly being updated and improved.

1.5. Blender

A free and open-source 3D modeling, animation, and rendering program is

called Blender. The Blender Foundation created it, and it is widely used in

the video game, film, and architectural visualization sectors.

One of Blender's standout features is its robust 3D modeling capabilities,

which let users easily create and edit intricate 3D models. Numerous

modeling capabilities, including as sculpting and retopology are included in

the software. It also offers a significant collection of tools for designing

textures and materials, enabling the creation of models that are incredibly

realistic and detailed.

Overall, Blender is a powerful and versatile 3D modeling and animation

software that is widely used in a variety of industries. Its combination of

6

advanced modeling, animation, and rendering tools, as well as its support

for multiple renderers and the active community make it an excellent

choice for a wide range of projects.

2. The making

2.1. The first steps

I wanted the game to have a lot of features a player can use and be as user

friendly as possible. Here is a list of all the functions I decided to add to my

game:

➢ Physics (Planet rotation etc.)

➢ A ring generator tool (Allows the player to generate rings for their

planet.)

➢ A resize tool (Allows the player to resize their planet to their liking.)

➢ Different materials/colors (I wanted to add as many different

materials/colors as I can, so the player has a good amount to choose

from.)

➢ A custom camera (ROBLOX Studio has one built-in, but I wanted to

make my own.)

After planning, I could start my game. First, I opened a new project inside

ROBLOX Studio.

7

ROBLOX Studio has a variety of templates to choose from, but I chose the

„Baseplate“ Template, as it only has 2 starter objects that I can delete later.

The next step was cleaning the workspace and deleting objects I don’t

need. After had done that, I was left with a blank void of nothingness. I then

decided to add 2 different objects – an object that will work as the camera

for the player. You can see it in the picture: the green part is the camera,

and the white glowing part is the planet.

I then made a simple loading screen and a script that positions the player’s

usual camera to the green ball. This way the player will not be able to move

it.

8

Then, I made a script that anchors the player’s character in one place, which

disables its movements.

This code also moves the character to a position where it’s not in the way of

the planet. Now that I had done the setup, I could continue doing more

important things.

2.2. User interface (UI)

(2.2.1.) What is a user interface (UI)?

A user interface (UI for short) is the point of interaction between a user and

a digital device or software application. For example, to interact with your

phone you tap on the screen of it. But for a computer, you use the mouse

and keyboard objects to interact with the computer. If you are on google

and want to search for something, you use your keyboard to type it. That is

an example of interacting with a device.

First, I added a loading icon to the loading screen I made in chapter 2.1.

Then, I started making a panel with buttons which the player can edit their

planet with. I wanted to go for a minimalistic UI style. For the colors I

9

decided I would go with grey and white. First, I made the frame for the UI.

Then, in the frame I added a “UIListLayout” element which will automatically

position all content in the frame. I then added 5 new ones to the frame.

There are 5 Categories: “Physics”, “Size”,

“Rings”, “Appearance” and “Camera”. I will

now explain what each one is for. The

physics category has 3 input boxes that

assign a value once it has been submitted.

For example, if I set the “rotation velocity

(self)” to 6, it will fire a remote to the server

and the server will assign that value to the

players planet.

(2.2.2.) What is a remote?

Imagine you (the “client”) are playing a

game. The game is multiplayer, which

means that there are other people playing

with you. It is a building game, and you

decide to place a block. When you place

the block, a remote fires the server to make

your action visible to every player on the

server. If the game doesn’t do that, the

action you have performed is only visible

client-sided (only visible to you). In Lua you

fire a remote like this:

In the Arguments table

there are 3 values. The

first value that will be

passed is “Hello”,

because it is marked as first in the table. You can also do it like this:

10

The rings category generates a ring for the player’s planet. You can edit the

ring’s size and color. The appearance section applies a color, light or

material to the player’s planet. Lastly, the camera category basically just

unlocks the player’s camera or locks it in one place. I also made a color

picker UI to make the options that require colors work.

2.3. Modeling

My game didn’t have a lot of things to model, but a lot things to code. I

first started modeling a ring (for the ring generator).

This is how it turned out. I wanted

the edges to be a bit smoother,

but I thought this design wasn’t

that bad. I designed the ring so it

can scale on every axis (X, Y, Z)

and that the ring can use different

colors.

Then I started making some

textures for the planet. ROBLOX

Studio provides free textures, but I also made my own. Here is a texture I

made:

11

I called it “Blue Lava”

I also modeled some other objects for my game like spheres and other

shapes.

2.4. Coding

Now that I had everything done, I could start coding the game. I will be

explaining what every code does in detail. First, I decided to make the UI

function properly. I wanted the UI to be animated and I also wanted the UI

12

to have sounds. First, I wrote a script that added click animations to the UI.

This makes it when a player clicks a button it has a small effect. (The effect

is a “Ripple” effect):

On the first 2 lines of the code, I made 2 variables. “Frame” locates the UI

frame. “TweenService” calls a tweening service provided by ROBLOX.

Here, I made a function called “ClickAnimation”.

(2.4.1) What are “Functions”?

You will see “Functions” in pretty much every programming language. In

Lua, a function is a block of code that can be called at any point. Functions

are first-class values which means they can be assigned to variables, passed

as arguments to other functions and returned as results from functions.

Here is an example of a function.

This function will calculate two numbers. In this case, 20 and 80. Once this

function is called it will print out the result (100).

13

In this function, the circle that will be used for the animation is being

created with “Instance.new”

Next, I programmed a function that handles the animation for the button.

This function makes the created circle bigger over time and makes it fade

away after. I also called this function with “task.spawn”. Here’s why:

(2.4.2) What is “task.spawn”?

Task.spawn allows you to create a new coroutine. Calling a function with

task.spawn acts like making a new script run that function. The reason why I

used task.spawn here is because when a player had clicked a button a few

times in a row, the “Animate” function would have not finished animating

the button in time, because it would have been called with every click.

That’s why when this function is called with task.spawn, it creates a new

coroutine. As I said before, a coroutine acts like a new script. The function

executes and no matter what, it will not stop until it is finished. (I will

explain coroutines more in detail on the next page)

I also made my own tweening style. ROBLOX provides pre-made tweening

styles, but I always like my own. I did use their pre-set tweening style on the

fade-out animation.

14

Next, I made a script that adds hovering animations. When you hover over

certain UI objects, it will play an animation.

First, I made a table variable which will keep track of all objects that are

currently hovered on.

Next, I made a function which will be called when a player hovers over a UI

object. Here, a replica/clone of the object is made. Then it plays an

animation that rotates and scales the replica.

This function will be called one a player hovers off a UI object. This basically

destroys the hover effect and resets the button’s rotation.

Here we see a coroutine. This coroutine has a loop in it. The reason why I

wrote this is because when a player hovers over UI objects too fast, it

doesn’t have time to call the “HoverAnimationLeave” function. This loop

checks if a object still has the hovering effect, even if the player is not

hovering on it anymore. If the loop detects something like that, it will create

a new coroutine that removes the hovering effect from the object.

15

(2.4.3) What is a coroutine?

Coroutines are a programming concept that allows for multitasking, where

a program or function can temporarily pause its execution, and then

resume from where it left off later.

A coroutine is a special type of function that can be paused at any point

during its execution, and then resumed later from where it left off. This

makes it possible to write programs that can perform multiple tasks at

once, without having to resort to complex threading or process

management. For example, if you want to have two loops in a program, you

can’t just do it like this:

You would have to use a coroutine to execute both loops at a time. As I

explained earlier, a coroutine is like a new script.

Now, I made a script that fires the server with the player’s values when the

player clicks the button.

16

First, I made a code that loops through every child in the UI frame. I used

the function “GetDescendants” to do this. In ROBLOX, every object (child)

has a parent. Next, I wrote a block of code that calls the hover/click

functions when a button is being hovered/clicked on.

(2.4.4) What are parents and children (in Lua)?

Here, “Camera”, “Terrain” and

“PlanetFolder” are the children of

“Workspace”. So workspace is the

parent of all these objects.

Here, it checks if the child is a button and if the button includes a text box.

Then, once clicked, it will fire the server to apply the values of the button to

the player’s planet. It also checks if the child’s name is not “RingGenerator”,

“ColorPicker” or “MaterialPicker”. This was cut out in the screenshot.

17

Here, it checks if the button’s name is “ColorPicker”. If it’s the case, it will

run a function where it loops though all the colors of the color picker, and

when the player clicks on one of these colors, it fires the server and applies

the color to whatever category the player has chosen.

This code functions the same as the color picker code, but the player

chooses materials for the planet instead of colors.

And here is the last part of the code, which handles the ring generator

buttons.

Now, it was time to program the server-side part of my game.

18

(2.4.5) Server-side and client-side, what’s the difference?

Server-side code is responsible for managing the game state, handling

game logic, and communicating with other game servers or external

services.

Client-side code, on the other hand, is responsible for rendering the game

and providing the UI. Client-side code includes UI, sound effects,

animations, and player input. Client-side code runs on the player's device

and communicates with the server to receive updates about the game

state.

If you made a game that relies solely on the client-side code, the whole

game would only be visible to the client. You can also say “frontend” and

“backend” for server-side and client-side.

First I made a script that receives events from remotes that the client/player

fired when clicking a button on the UI. For this, I made a brand-new script.

19

Now I made a function that applies the data that the client sent to the

planet.

Here it checks if the data exists and applies the requested data to the

planet.

20

Finally, the last thing to add was the “play test”. In the play test mode, you

could see your planet rotating around the sun.

Here I made a script that receives data if the player wants to start the play

test mode. Then it sets up the planet and sun and makes it rotate with the

player’s customized values.

2.5 – Bug fixes

(2.5.1) What are “bugs”?

A bug is a flaw or glitch in a system. Programmers often call errors in their

code bugs. But why do we call errors “bugs”? The term "bug" was first used

in the context of computing by Grace Hopper in 1947, when she found a

moth trapped in a relay in the Harvard Mark II computer. The moth caused

21

a problem in the computer's operation, and Hopper removed it and taped

it to a logbook, noting that they had "debugged" the system.

Here we can see the

moth that is taped to

the logbook. Since

then, an error has been

called a bug by

programmers.

The first bug I encountered was when the player generated a ring after the

play test, the ring would not be in place. This was because the planet had

changed positions after the play test. An easy fix to this problem was simply

adding this line to the code where it generates the ring:

The next bug I encountered was in the play test mode. The planet wouldn’t

rotate around the sun. It would only spin around itself. This was because I

had forgotten to add a function that makes the planet rotate around the

sun.

I made a new function in the play test script that makes the planet rotate

around the sun. The rest of the game was bug-free

22

3. The end

3.1. Conclusion

There we go! The game is finally done. I had a lot of fun making this TraPe!

I learnt a lot about the programs I have used and about LUA. But I realized

that ROBLOX studio is not the best game engine I could have used. It’s

good for beginners, but I could have used something more advanced like

unreal engine or CryEngine.

3.2. Sources

https://www.lua.org/docs.html

https://create.roblox.com/docs

https://stackoverflow.com/

https://google.com/

https://wikipedia.com/

https://www.lua.org/docs.html
https://create.roblox.com/docs
https://stackoverflow.com/
https://google.com/
https://wikipedia.com/

23

https://tutorialspoint.com/

Download links:

VS Code: https://vscode.dev | https://code.visualstudio.com/

ROBLOX Studio: https://roblox.com/create

Blender: https://www.blender.org/download/

Lua: https://www.lua.org/download.html

Download my game here:

https://mediafire.com/download/9GGh2VzhOX0rha

https://tutorialspoint.com/
https://vscode.dev/
https://roblox.com/create
https://www.blender.org/download/
https://www.lua.org/download.html
https://mediafire.com/download/9GGh2VzhOX0rha

